Molecular heterogeneity drives reconfigurable nematic liquid crystal drops

multiple molecules graphic

Liquid crystals are composed of rod- or disc-like molecules called mesogens, and, as a result of the alignment of these mesogens, exhibit remarkable physical properties in between those of a solid and a liquid. The liquid crystals used in this study are made of oligomers, flexible short-chain polymers comprised of smaller rod-like molecular building blocks. … Read more

Broadband and Pixelated Camouflage by Exploiting Large Poisson Effect in Main-Chain Chiral Nematic Liquid Crystalline Elastomers

2021 Nat Mater broadband camouflage image

Inspired by cephalopod’s skin, the Yang lab creates an artificial chromatophore that can change colors instantly—from near-infrared to visible to ultraviolet—on demand, by inflating thin, flexible membranes made from cholesteric liquid crystal elastomers, where the mesogens are arranged in helical shapes. As the membrane is placed on top of a cavity and inflated, the pitch … Read more

Pixelated Broadband Camouflage

2021 Nat Mater broadband camouflage image

Shu Yang of the School of Engineering and Applied Science has developed an artificial chromatophore that can change colors on command by taking inspiration from active camouflage in the animal kingdom. Made from polymer networks of liquid crystals arranged in helical shapes, these membranes require less deformation to change color than previous models, which could lead … Read more

Threading high-performance, self-morphing building blocks across scales toward a sustainable future

Inspired by biological structural materials, Yang, Liang Feng (Penn Engineering, MSE) and Masoud Akbarzadeh (PennDesign, Architecture) have received $4.6M grant from National Science Foundation (NSF) in collaboration with researchers at Princeton University (Andrej Košmrlj and Pierre-Thomas Brun), Rowan University (Xiao Hu) and Rutgers University Camden (David Salas-de la Cruz) to drive eco-future manufacturing of highly efficient structures and components that are … Read more

Open Medical (Our action to combat with COVID-19)

Doctor & nurse wearing origami maks

A team of medical device developers have come together to create a new respirator design to address the shortage of PPE in hospitals. This design is based on Origami – it does not require any sewing or other special equipment – just scissors, a zip tie, and an elastic band. Sterilization wrap (widely available in … Read more

Drops of liquid crystal molecules branch out into strange structures

multiple molecules graphic

Researchers made a variety of shapes, including flowers (center) and corals. By changing the ratio of long- to short- rod-like mesogens in the droplet, the researchers could control what shapes the droplets changed into when the temperature was decreased. A new study in Nature details the “weird” finding by showing how droplets containing short chain liquid … Read more

Reducing Energy Use with Building Skins

Yang on Reducing Energy Use with Building Skins

In the heavily regulated building sector, innovative materials face a major disadvantage: building codes. For this reason, and because climate change can’t wait, Shu Yang is using approved materials in new ways to bring her self-cooling building skins to market. Yang is motivated by having an impact. Originally focused on studying nanomaterials, she recalls attending … Read more

Superstrong, Reversible Adhesive That Works Like Snail Slime

Snail on tree trunk

A new study demonstrates a strong, reversible adhesive that uses the same mechanisms of adhesion as snails. When wet, the material conforms to the grooves on a surface and when dry, the material hardens and fastens itself securely to the surface. “When it’s conformal and rigid, it’s like super glue. You can’t pull it off. … Read more

Powering the Future with Giant Clams

Powering the Future with Giant Clams graphic

In 2014, Shu Yang, of the Materials Science and Engineering, joined School of Arts and Sciences’ biophysicist Alison Sweeney on an unusual quest. Backed by a NSF INSPIRE grant for bold, interdisciplinary research, the duo aimed to unlock the solar-powered secrets of the giant clam. Read more. Continue reading at The Atlantic. and related reading at Mimicking Giant Clams to Enhance the Production … Read more